Wee-Wii-validation?

Investigating the validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance in young children

Dr Lisa Bunn
Plymouth University
Overview

Why use a Wii balance board (WBB)?

Is it valid and reliable?

Is it still valid and reliable for use with children?

Clinical take-home messages
Gold standard measures of postural control

The WiiBB - A potential tool to examine standing balance

(Goble, Cone, & Fling, 2014)
WBB: An alternative measure of postural control?

- Cheaper
- Portable
- Easy to use
- Similar design
 - 22x48 cm platform
 - Force transducers at each corner

Research to date:
- Adults: Clark et al., 2010
- Older individuals: Scaglioni-Solano & Aragón-Vargas, 2014
- Children >10 years: Larsen et al., 2014
- Measuring sway: Flatters et al., 2014
How do young children differ & what difference does this make?

Sensory control of balance changes during childhood

- Comprehension, body structure & distribution of mass alters
- A reduction in reliance on visual and vestibular information
- An increase in the reliance of proprioceptive information

*Ages of 4 and 10 years

(Godoi & Barela, 2008)

(Shumway-Cook & Woollacott, 1985)

Higher noise levels than a laboratory grade force platform

Noise levels increase with lower weight

(Flatters et al., 2014; Huurnink et al., 2013)
Research aim

To compare the feasibility of measuring the balance abilities of typically developing children (tdc) aged 4-10 using a Wii balance board (WiiBB)

• To undertake measurement in a non-gait-laboratory environment in order to explore barriers and constraints to measurement

• To compare the accuracy and reliability of measurements to that of the gold standard force plate (Kistler)
Methods

54 tdc: 28f : 26m
(school partnership in Plymouth)

40 second collections, "standing still, facing forwards"

4 sensory conditions: Feet together/apart, eyes open/closed (randomised)

Equipment:

Kistler mobile force plate with amplifier (sample rate of 200Hz)

1401 Data Acquisition hardware

Laptop (OS) with Spike2 software

WiiBB + Hama Nano Bluetooth USB Adapter

Windows XP Laptop running Matlab v7 (sync signal)
Results: Feasibility

<table>
<thead>
<tr>
<th>Invited to participate n=128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental consent n=54</td>
</tr>
<tr>
<td>Non-return n=74</td>
</tr>
</tbody>
</table>

Assent gained on day

- n=54
- (n=8 non-returns-not tested)

Data collection

- Analysed: n=31
- Data loss: n=27 (technical)

- ✓ WiiBB were familiar & friendly
- ✓ Children were motivated—even those without parental consent!
- ✓ All ages followed instructions!
- ✓ 4 simple conditions feasible

- × Parent reply slips…
- × Setup time
- × Technical delays
- × Data loss!!!
- × Transducer failure… 3 WiiBB
- × Analysis not clinician friendly (Matlab, wavelet filtering…)
Results: Validity & reliability

- **Force plate**
 - CoP path length (mm)
 - EO - FA
 - EC - FA
 - EO - FT
 - EC - FT

- **Force plate with WiiBB**
 - CoP path length (mm)
 - EO - FA
 - EC - FA
 - EO - FT
 - EC - FT

- **WiiBB**
 - CoP path length (mm)
 - EO - FA
 - EC - FA
 - EO - FT
 - EC - FT

- **Main effect of condition (ANOVA) p<0.01**
- **ICCs good to excellent (>0.7)**
- **WiiBB less sensitive to smaller fluctuations in stability (inaccuracy)**
- **Disproportionate responses to sensory conditions (may produce inaccurate Rhomberg's quotients)**
Take home clinical messages

Suitability of use in a clinical setting is limited

- Centre of pressure path length is underestimated (less sensitive – appears associated with low body mass)
- Force transducer drop out presents an unknown bias for clinicians
- Significant training would be needed for clinicians to analyse data and to detect anomalies (such as force transducer drop-out, a sneeze, spikes in electrical noise)

✓ Children were keen to have their balance measured, weren’t phased & were able to manage sensory tasks
Thank you & acknowledgements to the team!

Dr Dorothy Cowie, Assistant Professor in the Department of Psychology

Dr Dan Brady, Research Fellow in the Department of Psychology

Dr Allegra Cattani, BabyLab Research Fellow in the Department of Psychology

Professor Jonathan Marsden, School of Health Professions

Pump-prime funding from: