Electro-tactile stimulation of the neck induces body anteropulsion during stance

Dr Alessandro M De Nunzio

@CprSpine

Centre of Precision Rehabilitation for Spinal Pain
School of Sport, Exercise and Rehabilitation Sciences
College of Life and Environmental Sciences
University of Birmingham, United Kingdom
Background
Neck Proprioception and the Control of Posture

- Behavioural goals
 1. Postural orientation
 2. Postural equilibrium

Background
Neck Proprioception and the Control of Posture

- **Spindle** stimulation of the neck muscles has a powerful body-orienting effect during quiet stance.

Aim

- Investigate how skin mechanoreceptors from the neck region contribute to the control of posture and body schema formation.

Materials
Electro-tactile Stimulation

- 1 ms biphasic sinusoid @ 100Hz
- Stimulation intensity @140 % of the perception threshold = 5.1 ± 2.3 mA (Mean ± SD)
Methods

- 10 young healthy participants (8M, 29.5 ± 5.5 years, mean ± SD)
- Eyes Closed stance
- 4 repetitions
- Centre of Foot Pressure (Force Platform)
Experimental protocol and data analysis

- Mean Position & Standard Deviation of the Centre of Foot Pressure (CoP) along Antero-Posterior and Medio-Lateral Axis

Graphical representation of the experimental protocol

- 20 s - data analysis
- 30 s

Phase
- Pre (stim off)
- Stim (stim on)
- Post (stim off)
Results

- The CoP position moved forward (along the A-P axis) with a delay in the anteropulsion effect of ~10 s from the start of the stimulation.

![Diagram showing CoP movement and timeline with labeled axes and markers for left, right, anterior, and posterior movements, along with stim start and stop times.](image)
Results

- The stimulation induced a net forward CoP movement of approximately 1.2 cm.
Conclusions

- Integration, during static condition, of tactile afferences from the posterior aspect of the neck is fundamental for body orientation.

- Specifically, the stimulation of tactile receptors from the posterior aspect of the neck induces body anteropulsion during stance.
Implications

- Forward leaning of the body takes place in the transition phase of gait initiation.
- The tested stimulation protocol can be used to train elderly and neurologically impaired subjects to improve their control over transition phases and ability to lean forward without falling.

Acknowledgments

- Prof. Deborah Falla – CPR Spine, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham
- Dr. Eduardo Martinez-Valdes - CPR Spine, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham
- Prof. Dario Farina - Department of Bioengineering, Imperial College London
Contacts

- Dr. A. M. De Nunzio – CPR Spine, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham
- Email: a.m.denunzio@bham.ac.uk
- Tel: +44 (0) 121 4158389

@CprSpine