

Adventures in Digital..... Augmenting the Physiotherapist

Prof Brian Caulfield Director, Insight @ University College Dublin

@caulfieldbrian

Combines 5 Centres of Excellence

8 Institutions

40+ Principal & Funded Investigators

400+ Researchers (PD, PhD)

50+ Collaboration Partners

30% of primary funding base from industry

Data Science

Biomedical Engineering Chemistry **Data Science** Physiotherapy Material Science Medicine **Sports Science** Nursing Systems **Biology**

HealthKit

Augmenting Human Effectiveness in a Digital World

.....where we create an enormous digital footprint and are overwhelmed with data....

.....but get limited intelligence from it....and have little control over its journey....

Augmented Privacy

Augmented Cognition

Intelligence Decisions

Augmented Performance

The Augmented Human

Augmented Privacy

Augmented Cognition

Intelligence Decisions

Augmented Performance

The Augmented PHYSIO??

Automated PT?

Robotic PT?

augment

verb /ɔ:gˈmɛnt/ €

- 1. make (something) greater by adding to it; increase.
 - synonyms: increase, make larger, make bigger, make greater, add to, supplement, top up, build up, enlarge, expand, extend, raise, multiply, elevate, swell, inflate; More

Effective Exercise Implementation

Existing technologies to assist with implementation of Rehabilitation Exercise......

provision of interactive feedback to motivate patient

guidance through exercise performance

measurement of compliance

accurate measurement of technique with clinically relevant feedback

creating a data-driven society

÷

creating a data-driven society

÷

creating a data-driven society

÷

IMUs

- Advantages
 - Objective measurement
 - Quick to apply
 - Inexpensive
 - Allow natural movement
 - Lead to possibility of using mobile phone as sensor

Data Collection

Model Evaluation		% ACCURACY (Single Sensor)	% ACCURACY (Multiple Sensors)		
Single Limb	Detection & Segmentation	95-99	95-99		
Exercises	Binary Classification	80-85	85-95		
(Ortho Rehab)	Multi-label Classification	80-85	85-95		
Complex Multijoint	Detection & Segmentation	95-99	95-99		
Exercises (S&C Exercises)	Binary Classification	80-85	85-95		
	Multi-label Classification	40-50	70-75		

currently evaluating personalised classifier model.....

FormuLift

Good Reps Bad Repr

4 <mark>0</mark>

1 4

5 <mark>0</mark>

0 6

Mobile Balance Evaluation Toolkit

Y Balance Test

Y Balance Test

Can we move it from analog to digital?

If so, what more can we learn from it?

Normal Balance

Abnormal Balance

YBT Testing Points

creating a gaza-griven society

F

Can inertial sensor data capture dynamic balance control deficits following a concussive head injury?

driven society

Are dynamic balance control deficits at preseason associated with an increased risk of sustaining a concussion?

simple answer.....YES

6ND

laya

Players with sub-threshold q-YBT performance at baseline 3 times more likely to sustain concussive injury throughout the season, controlling for previous history of concussion......

Thank You!

international society of electrophysiology and kinesiology UCD / Dublin / Ireland 30th June-2nd July 2018 www.isek.org

Call for Abstracts now open!

Bringing together researchers in human movement and the neuromuscular system

	Regression Model	Predictors	P Value	Odds Ratio	LOWER	Upper
	Model 1	Concussion History	0.03	2.94	1.10	7.85
_		Constant	<0.01	0.14		
L	Model 2	ANT_R_GyromagApproxEntroy	0.015	3.84	1.29	11.40
.0 _		Constant	<0.01	0.104		
Inter		Concussion History ANT R GyromagApproxEntropy	0.045	2.81	1.024	7.736
٩	Model 3	Constant	<0.023	0.07	1.198	10.971
		Concussion History	0.27	2.91	0.44	19.2
		ANT_R_ApproxEntropy	0.13	3.72	0.69	20.10
	Model 4	ANT_R_GyromagApproxEntropy*Con Hx	0.97	0.96	0.10	8.9
		Constant	<0.01			

	Regression Model	Predictors	P Value	Odds Ratio	LOWER	Upper
	Model 1	Concussion History	0.03	2.94	1.10	7.85
	Model 1	Constant	<0.01	0.14		
T	Model 2	PL_R_lumbar_pitch_f95%_22.03	<0.01	5.962	2.08	17.07
		Constant	<0.01	0.097		
-Lai		Concussion History	0.04	3.07	1.07	8.79
Ò	Model 3	PL_R_lumbar_pitch_f95%_22.03	<0.01	6.04	2.05	17.80
<u>.</u>		Constant	<0.01	0.07		
SO		Concussion History	0.77	0.77	0.13	4.54
	Model 4	PL_R_lumbar_pitch_f95%_22.03	0.38	1.95	0.44	8.66
		PL_R_lumbar_pitch_f95%_22.03*ConHx	0.05	9.68	0.99	94.82
		Constant	<0.01	0.12		

Regression Model	Predictors	P Value	Odds Ratio	LOWER	Upper
Model 1	Concussion History	0.03	2.94	1.10	7.85
	Constant	<0.01	0.14		
Model 2	PM_L_lumbar_gyroY_approxDW_185	0.037	2.84	1.06	7.59
	Constant	<0.01	0.143		
Model 3	Concussion History PM_L_lumbar_gyroY_approxDW_185	0.043 0.043	2.82 2.82	1.03 1.03	7.70 7.70
	Constant	<0.01	0.09		
	Concussion History	0.03	6.33	1.16	34.52
	PM_L_lumbar_gyroY_approxDW_185	0.21	0.26	0.03	2.17
Model 4	PM_L_lumbar_gyroY_approxDW_185*c onchx	0.03	6.33	1.162	34.52
	Constant	<0.01	0.53		